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Abstract—Objective: This work investigates the 

possibility of automated malaria parasite detection 

in thick blood smears with smartphones.Methods: 

Our deep learning algorithm is the first of its kind 

to identify malaria parasites in smartphone-

optimized photos of thick blood smears. There are 

two stages to our procedure. To begin, we do a rapid 

screening of a thick smear picture using an 

intensity-based Iterative Global Minimum 

Screening (IGMS) to identify potential parasites. 

The next step is to use a tailored Convolutional 

Neural Network (CNN) to label each potential 

candidate as a background or parasite. In 

conjunction with this publication, we provide to the 

general public a dataset consisting of 1,819 thick 

smear photographs originating from 150 patients. 

In order to implement the deep learning strategy 

detailed in this article, we trained and tested it using 

this dataset.  

Using the following performance indicators: 

accuracy (93.46%±0.32%), AUC (98.39%±0.18%), 

sensitivity (92.59%±1.27%), specificity 

(94.33%±1.25%), precision (94.25%±1.13%), and 

negative predictive value (92.74%±1.09%), the 

customized CNN model was found to be effective in 

discriminating between positive (parasitic) and 

negative image patches in a patient-level five-fold 

cross-evaluation. Automatically discovered parasites 

and ground truth have very high correlation 

coefficients (>0.98) at both the picture and patient 

levels, proving that our technology is feasible.  

Conclusion: A smartphone software that uses deep 

learning techniques to identify parasites in thick 

blood smears achieves promising results.  

Importance: Automated parasite identification 

using cellphones offers a potential substitute for 

human parasite counting in the diagnosis of 

malaria, particularly in regions where trained 

parasitologists are few.  

Glossary Terms– Advanced computer-assisted 

diagnostics; Deep learning; Malaria 

I. INTRODUCTION  

Malaria is a disease that may cause death all across 

the globe. Approximately 435 thousand people lost 

their lives to malaria in 2017, with 219 million cases 

recorded globally, as stated in the 2018 World Health 

Organization (WHO) malaria report [1]. The most 

reliable method for diagnosing malaria is to examine 

stained thick and thin blood smears under a 

microscope [2, 3]. Although it takes a lot of time and 

is inexpensive, microscopy inspection is readily 

accessible. The proficiency of the parasitologists 

doing the microscopy is also crucial to the accuracy 

of the results [4]. Parasitologists often operate in 

settings with limited resources and no formal 

structure to guarantee that their skills and diagnostic 

quality are maintained. This results in misdiagnoses 

and the wrong kind of therapy being administered 

[4]. For instance, if a malaria test comes back 

positive, people may take anti-malaria medication 

needlessly, which can cause side effects like nausea 

and abdominal pain. On the other hand, if a malaria 

test comes back negative, people may have to take 

antibiotics again, which can lead to unnecessary 

consultations and even the development of more 

severe malaria [5]. Therefore, it is an attractive 

research objective to build an automated method for 

malaria diagnosis in order to improve the treatment 

and management of individual patients. There are 

two major benefits to automated parasite detection: 1) 

it may lower diagnostic expenses and 2) it can 

provide a more accurate diagnosis, which is 

particularly useful in places with limited resources. In 

order to diagnose malaria and measure the severity of 

the condition, parasite numbers are crucial. In order 

to gauge medication efficacy and possible resistance, 

they are also useful for keeping tabs on patients. The 

purpose of this research is to examine the feasibility 

of using cellphones to automatically identify and 
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count malaria parasites in digital photographs of thick 

blood smears.  

In order to identify if a blood sample contains malaria 

parasites, a thick blood smear is prepared. Its 

sensitivity is about eleven times more than that of a 

thin blood smear, allowing for more effective parasite 

identification [5]. Differentiating between distinct 

parasite species and phases of development is a 

common usage for the thin blood smear, which is 

made by spreading a drop of blood onto a glass slide. 

Figure 1 shows that various processing techniques are 

needed for parasite identification on thick and thin 

blood smears. Both red blood cells (RBCs) and white 

blood cells (WBCs) are easily discernible in thin 

blood smears. Segmenting red blood cells (RBCs) 

and then classifying each segmented RBC as infected 

or uninfected is a common procedure for automated 

parasite identification in thin smears [5]-[7]. Fig. 1(a) 

shows that in thick blood smears, the only visible 

components are white blood cells (WBCs) and red 

blood cell nuclei. Consequently, it is necessary to 

directly identify parasites. A common procedure 

involves preselecting potential parasites and then 

deciding whether they are real or just background 

noise. False parasite identification may result from 

artifacts created when white blood cell nuclei and 

other non-parasite components absorb dye. 

 

Fig. 1. Examples of thick and thin blood smears. Red 

circles are parasites and yellow circles are white 

blood cells.  

A. Related work  

Automated parasite identification has been the focus 

of several recent proposals for image processing and 

analysis on thin and thick blood smears. See 

also[5,8], [9] for reviews of the relevant literature. 

Here we provide a quick rundown of the methods that 

have been developed to detect malaria in thick blood 

smears.  

Commonly used in traditional parasite detection 

methods are segmentation-based approaches that 

include thresholding and morphological procedures 

[10]-[13]. In order to separate parasites from white 

blood cells (WBCs) and potential parasites from the 

background, Kaewkamnerd et al. [10] suggest a 

technique that uses an adaptive threshold on the V-

value histogram of the HSV picture. After testing it 

on 20 photos, the suggested approach reaches a 60% 

accuracy rate. To segment malaria parasites, Hanif et 

al. [11] first employ an intensity-stretching approach 

to improve the contrast of 255 thick blood smears, 

and then they use an empirical threshold. The authors 

provide qualitative findings on many photos, 

showcasing the use of various empirical criteria to 

get satisfactory segmentation outcomes. Parasites in 

thick blood smears may be identified using a 

combination of morphological segmentation and 

color information, as shown by Chakrabortya et al. 

[12]. After conducting experiments on 75 photos, the 

patch level assessment revealed a 95% success rate in 

detecting and a 10% false positive ratio. In order to 

identify red blood cells (RBCs) infected with malaria 

parasites in thin and thick blood smears, Dave et al. 

[13] use morphological procedures and adaptive 

thresholding based on histograms to denoised 

pictures. The approach discovers 533 parasites, 

compared to 484 parasites marked as ground truth, 

according to patch level assessment on 87 photos. 

While conventional methods for parasite 

identification are quick and easy to use, they struggle 

when faced with massive datasets. The reason for this 

is because conventional methods are very susceptible 

to changes in the images and their parameters are 

often found via empirical means. Evaluation of 

performance at the patch level on short datasets 

(ranging from twenty to three hundred pictures) 

might vary substantially when applied to large 

datasets, image level, or patient level evaluations.  

Machine learning-based feature extraction and 

categorization are feature-based methodologies. From 

[14] to [18]. In order to identify parasites, Elter et al. 

[14] used a Support Vector Machine (SVM) classifier 

to extract 174 characteristics from candidates for 

plasmodia that had already been found. For 256 

photos at the patch level, the authors state that the 

sensitivity is 97%. In their study, Purnama et al. [15] 

used Genetic Programming to determine the kind and 

stage of parasites by extracting characteristics from 

RGB channel histograms, H channel from HSV 

space, and HIS channel features. On average, their 

classification algorithm is able to identify parasites 

with 95.58% accuracy and non-parasites with 95.49% 



Applied GIS                                                   ISSN: 1832-5505  

                                                                                                            Vol-11 Issue-04 Nov 2023 

 
accuracy when tested on 180 patches. The pre-

segmented picture is processed by Yunda et al. [16] 

to extract color features, co-occurrence texture 

features, and wavelet-based texture features. 

Redundant data are reduced using Principal 

Component Analysis (PCA), and the final 

classification is performed using a neural network 

model. A sensitivity of 76.45% for parasite 

identification was determined by evaluation of 110 

pictures. According to Quinn et al. [17], a 

randomized tree classifier should be used for 

classification after 475 randomly overlapping patches 

are extracted from each picture using linked 

component and moment features. The patches are 

created using downsampling and sliding window 

screening. Using 2903 pictures from 133 patients, the 

approach achieves a 90% accuracy rate with a 20% 

recall rate at the patch level. For parasite diagnosis, 

Rosado et al. [18] use an adaptive thresholding 

method. For WBC and parasite identification, they 

combine an RBF kernel based SVM classifier with 

geometry, color, and texture data. Their automated 

parasite prediction reached 91.8% accuracy, with 

sensitivity at 80.5% and specificity at 93.5%, when 

tested on 94 pictures from 6 patients; their white 

blood cell identification reached 98.2% sensitivity 

and 72.1% specificity. The effectiveness of the 

feature-based methods is assessed at the patch level. 

In other words, a single patch picture is used as the 

input sample and the assessment is usually the 

accuracy of patch categorization. The ultimate aim of 

malaria patient diagnosis, however, is to identify and 

categorize every patch—parasites and false positives 

alike. Having strong performance at the patch level is 

no guarantee of good performance at the picture level 

or patient level.  

Due to its exceptional performance on massive data, 

deep learning has recently been the fad in machine 

learning. Many fields outside of medicine have 

already seen improved performance as a result. Deep 

learning has been making waves in computer-assisted 

diagnosis systems as of late. There were primarily 

two causes for this change: First, in contrast to more 

conventional approaches and feature- 

 

Unlike traditional methods that rely on segmentation 

and manually created features, deep learning provides 

a comprehensive solution and 2) can find data-

derived hierarchical feature representations [23]-[25]. 

Automated feature extraction and parasite 

identification have been included into thick blood 

smears using deep learning algorithms throughout the 

last three years. After locating potential parasites, 

Delahunt et al. [19] suggest using a CNN in 

conjunction with a linear support vector machine 

(SVM) for classification. According to their reported 

results on 143 patients, the method used traditional 

features such as morphological, color, texture, and 

Harr-like features to predict a Limit of Detection 
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(LoD) of approximately 300 parasites/μL with a 

specificity of 92% at the patient level. However, they 

advocate for CNNs to be used for feature extraction. 

By using downsampled RGB pictures to train a four-

layer convolutional neural network (CNN) model on 

overlapping patches, Quinn et al. [20] suggest a 

parasite identification method. On 1182 photos, they 

found an average accuracy of 97%. Nonetheless, 

rather of dividing the datasets according to patients, 

the scientists did it according to images. What this 

means is that they may use the same patient photos in 

both their training and testing datasets. Patch level is 

the only metric used to assess performance. In their 

study, Mehanian et al. [21] used a CNN model for 

feature extraction and classification after first 

detecting WBCs using a Gaussian-kernel SVM on 

thresholded candidates. They then trained a second 

Gaussian-kernel SVM on parasite candidates that 

were created using a dynamic local thresholding 

approach. According to the scientists, their approach 

is able to detect 94.1% of patches with a sensitivity of 

91.6% and an accuracy of 89.7%, and 90.0% of 

patients with a LoD of around 100 parasites/μL and a 

specificity of 90.0%, using 1452 pictures from 195 

patients. Having a parasite detection runtime of 

around 20 minutes (on a quad-core CPU) does not 

guarantee speed superior to human processing. Using 

regular microscopy and Polymerase Chain Reaction 

(PCR) as reference standards, Torres et al. [22] test 

Autoscope, a prototype digital microscope instrument 

with automated procedures suggested in [21]), at two 

peripheral health institutions. Assuming the slides 

have sufficient blood volume, the authors find that 

Autoscope's performance (sensitivity of 72% at a 

specificity of 85%) is comparable to standard 

microscopy (sensitivity of 68% at a specificity of 

100%).  

Table I provides a summary of the current methods 

used to identify parasites in thick blood smears. Low 

accuracy is a result of the use of tiny datasets in the 

conventional parasite identification methods 

described in [10]–[13]. The procedures have only 

been tested in qualitative or patch-level experiments, 

therefore we can't be sure that the outcomes will be 

the same when applied to patients. In comparison to 

more conventional methods, feature-based 

approaches [14]–[18] often improve the parasite 

identification rate. But all of the assessments are done 

at the patch level, and the majority of them [14–16], 

[18] employ datasets that include less than 256 

pictures. There could be a significant performance hit 

if these methods are evaluated on a patient-level. In 

[17], a large dataset is used; nonetheless, the 

sensitivity that the authors attain is just 20%. Deep 

learning approaches have only been employed in four 

articles [19–22] to identify parasites in thick blood 

smears using large datasets; three of these papers [19, 

21], [22] evaluated the system at the patient level. 

Thick smears captured by smartphone have only been 

the subject of three publications out of the 

aforementioned literature [17], [18], and [20]. With 

the goal of processing these pictures on a more robust 

platform for remote diagnosis, two of these articles, 

[17] and [20], rely only on the smartphone for data 

collection. The only study to far that has used a 

smartphone screening app is reference [18]. In this 

work, we set out to create a parasite detecting 

software for smartphones based on deep learning, 

which can provide a better performance compared to 

the traditional SVM, as implemented in [18]. 

 

B. Contributions  
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Our contributions to thick blood smear processing are 

as follows, in comparison to previous work: We 

begin by creating a smartphone app that can 

automatically detect parasites in thick blood smears. 

This app will use our customized CNN model [23]-

[28] to classify parasite candidates as either parasites 

or background, and our proposed intensity-based 

Iterative Global Minimum Screening (IGMS) method 

to quickly automatically preselect parasite 

candidates. As far as we are aware, this is the first 

effort to develop a deep learning-based system for 

parasite identification in cellphones for thick blood 

smears. We also have a quick method. On a standard 

Android smartphone, detecting parasites in a 

3024×4032 photograph takes around 10 seconds. 

Third, we openly share a much bigger picture 

collection that we use to evaluate our technique. This 

set includes 1819 thick smear images and 84,961 

tagged parasites, and it was gathered from 150 

patients.  

Here is how the remainder of the paper is structured: 

In Section II, we lay forth our plan for an automated 

system to identify parasites. In Section III, we 

provide the dataset, methodologies, and outcomes of 

the experiment. Our findings are detailed in Section 

IV, and Section V provides a summary and last 

thoughts.  

II. METHODS  

Splitting our problem into a screening and 

classification step allows faster processing because 

we only need to predict on a relatively small number 

of pixel patches, which reduces the overall 

processing cost. We illustrate the pipeline of our 

method in Fig. 2.  

A. Parasite Candidate Screening  

The screening stage reduces the size of the initial 

search space and preselects a subset of most likely 

parasite candidates. Parasite candidates are selected 

according to the lowest intensities in grayscale based 

on a histogram analysis, exploiting that the nuclei of 

parasites and WBCs have darker intensities than the 

background (Fig. 3(a)). To eliminate WBC  

 

 

Fig. 4. Flowchart of parasite candidate screening 

(IGMS method). i is the iterator through L. 

distraction, we filter out WBCs before performing the 

parasite candidate screening. Therefore, our intensity-

based screening method for parasite candidate 

preselection consists of WBC detection and parasite 

candidate generation. The WBC detection first filters 

all WBCs present in the image. Then, the parasite 

candidate generation produces regions of interest by 

localizing the lowest intensities across a thick blood 

smear image. 
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Fig. 6. Architecture of the customized CNN model for parasite classification. Conv, Max-pool and BatchNorm 

denote convolution, max-pooling and batch 

normalization, respectively. The numbers above the 

cuboids indicate the dimensions of the feature maps. 

The numbers below the green dotted line represent 

the convolutional kernel sizes and the sizes of the 

max-pooling regions. The hidden layers include three 

fully connected layers and two dropout layers with a 

dropout ratio of 0.5. The output softmax layer 

computes the probabilities of the input image being 

either a parasite or background. 

1) WBC detection  

A sample smear image is shown in Fig. 3(a). We first 

convert the RGB image into a grayscale image. Then, 

we convert the grayscale image into a binary mask 

M1 using Otsu’s method [30]. In this binary mask 

M1, the large ROI area corresponding to the field of 

view is shown as foreground (white) while WBCs are 

shown as background (dark); see Fig. 3(b). By filling 

the holes inside the large field of view ROI area, we 

obtain the field of view mask M2, shown in Fig. 3(c). 

WBCs can then be separated out by subtracting the 

binary mask M1 from the ROI mask M2 (see Fig. 

3(d)). Clean WBCs are finally obtained by filtering 

small noisy areas. Fig. 3(e) demonstrates the result of 

this step. The pixels of WBCs are set to zeros for the 

following parasite detection steps.  

2) Parasite preselection using 

Iterative Global Minimum Screening 

(IGMS)  

IGMS generates RGB parasite candidates by 

localizing the minimum intensity values in a 

grayscale image. If only one pixel is localized, a 

circular region centered at this pixel location with a 

pre-defined radius of 22 pixels (average parasite 

radius) is cropped from the original RGB image and 

is selected as a parasite candidate (Fig. 5 (a)). If more 

than one pixel is localized, a new parasite candidate 

centered at the ith pixel is added when all the 

distances between the ith pixel and previously 
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selected pixels are larger than 22. Once a parasite 

candidate is selected, the intensity values inside this 

region of the grayscale image will be replace by zeros 

to guarantee the convergence of the IGMS method. 

The screening stage stops when the number of 

parasite candidates reaches a given number. In our 

experiments, we select 500 parasite candidates for 

each image to cover the true parasites as much as 

possible. Experiments on our dataset of 150 patients 

show that we can achieve a sensitivity above 97% on 

patch level, image level, and patient level when using 

this number. Each parasite candidate is a 44×44×3 

RGB patch image, with pixels having a distance 

greater than 22 to the center set to zero. Fig. 4 shows 

the processing flowchart for IGMS and Fig. 5 shows 

examples of positive and negative patches extracted 

by IGMS.  

B. Parasite Classification  

Once the parasite candidates are extracted, we use a 

CNN model to classify them either as true parasites 

or background. In this work, we customize a CNN 

model consisting of seven convolutional layers, three 

max-pooling layers, three fully connected layers, and 

a softmax layer as shown in Fig. 6. A batch 

normalization layer is used after every convolution 

layer to allow a higher learning rate and to be less 

sensitive to the initialization parameters [30], 

followed by a rectified linear unit (ReLU) as the 

activation function [23]. Max-pooling layers are 

introduced after every two successive convolutional 

layers to select feature subsets. The last convolutional 

feature map is connected to three fully connected 

layers with 512, 50, and 2 hidden units, respectively. 

Between the three fully connected layers, two 

dropout layers [31] with a dropout ratio of 0.5 are 

applied to reduce model overfitting. The network is 

derived from VGG19 [27] by selecting the first six 

convolutional layers and three corresponding max-

pooling layers from the VGG19 architecture to stop 

the feature maps at 64@5×5, followed directly by the 

fully connected and dropout layers. This shorter 

network structure provides similar performance while 

being faster and requiring less memory, which is 

important for smartphone applications. The output of 

the CNN model is a score vector, which gives the 

probabilities of the input image patch being either a 

parasite or background. We can obtain a larger or 

smaller number of predicted parasites by applying an 

adaptive probability threshold to the score vector.  

Compared with pre-trained networks such as VGG 

[27], GoogLeNet [28], ResNet-50 [26], our 

customized CNN model has several advantages: 1) 

runtime is reduced by using a smaller set of 

customizable parameters, with the input size of the 

model being determined by the average parasite size 

in thick smear images (44×44×3), which is much 

smaller than the input size used by the other networks 

(224×224×3); 2) our smaller network structure with 

fewer layers is more suitable for smartphones. Since 

the input size is smaller, our network should in fact 

be less deep to avoid feature maps that are too small. 

A smaller network structure with less parameters also 

avoids over-training on the smaller input space. 

Compared to the pre-trained networks mentioned 

above, our customized CNN model achieves a better 

accuracy, despite having less network layers, and a 

shorter runtime. For an input image of 4032×3024×3 

pixels, our system can complete the parasite detection 

within ten seconds (about eight seconds for candidate 

screening and two seconds for classification) on a 

standard Android smartphone. Both the smaller set of 

parameters and the smaller network structure 

contribute to the reduced runtime.  

C. Smartphone-Based Application  

Based on the IGMS method and customized CNN 

model for parasite detection, we develop a 

smartphone-supported automated system to diagnose 

malaria in thick blood smears. We implement this 

system as a smartphone app for the Android mobile 

operating system. When using this app, the camera of 

the smartphone is attached to the eyepiece of the 

microscope. The user adjusts the microscope to find 

the target field in the blood smear and takes pictures 

with the app. The app then detects and counts 

parasites, records parasite numbers in a patient 

database, and displays the results in the user 

interface. Users will take several images until they 

have collected enough data to meet the requirements 

of their local protocols. The app will aggregate the 

parasite counts across all images taken. We 

implemented all algorithms using the 

OpenCV4Android SDK library.  

After the image acquisition and processing stage, the 

app will go through a series of input masks for the 

user to fill in the information associated with the 

current patient and smear. This information is saved 

in the local database of the app, which we build with 

the SQLite API provided by Android. The app offers 

a user interface to the database where the user can 

view the data and images of previous smears, 

allowing hospital staff to monitor the condition of 

patients. Fig. 7 shows a smartphone running our app 
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connected to a microscope (left-hand side) and a 

sample screenshot displaying a thick smear image 

with parasite counts (right-hand side).  

III. DATA PREPARATION AND 

EXPERIMENTAL RESULTS  

A. Dataset  

We photographed Giemsa-stained thick blood smear 

slides from 150 P. falciparum infected patients at 

Chittagong Medical College Hospital, Bangladesh, 

using a smartphone camera for the different 

microscopic field of views. Fig. 7 shows the 

smartphone-microscope setup and a screenshot of the 

phone displaying a thick smear image. Images are 

captured with 100x magnification in RGB color 

space with a 3024×4032 pixel resolution. An expert 

slide reader manually annotated each image at the 

Mahidol-Oxford Tropical Medicine Research Unit 

(MORU), Bangkok, Thailand. We de-identified all 

images and their annotations, and archived them at 

the National Library of Medicine (IRB#12972). In 

this work, we use 1819 thick blood smear images 

from these 150 patients. We publish the data here: 

 

Fig. 7. Smartphone-based malaria data acquisition 

and parasite detection. 

B. Statistics of the Dataset  

We first perform a statistical analysis on the whole 

dataset of 150 patients. There are in total 84,961 

annotated parasites, whose radius varies from two to 

96 pixels, with an average radius of 22 pixels (Fig. 

8(a)). Each image includes one to 341 parasites, with 

an average number of 47 parasites (Fig. 8(b)). Each 

patient set contains three to 22 images with an 

average number of 12 images (Fig. 8(c)), and 

contains eight to 3,130 parasites with an average 

number of 522 parasites (Fig. 8(d)).  

C. Data partitioning  

We divide the data on patient level into two sets: Set 

A and Set B, by a ratio of 4:1. Our data division 

strategy is shown in Fig. 9. Set A includes 120 

patients with 1443 images and 72,184 parasites, and 

is used for the CNN model training and evaluation. 

Set B includes 30 patients including 375 images and 

12,777 parasites, and is used for the performance 

evaluation of our method for automated parasite 

detection using screening and classification. We 

further split Set A into training sets and test sets on 

patient level, and evaluate the CNN model 

performance based on five-fold cross evaluation. To 

achieve a better performance for the CNN model, we 

use a balanced training set with an equal number of 

positive and negative patches. For each image in Set 

B, we generate 500 patches using IGMS. 
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Fig. 8. Statistical analysis of our dataset (including both Set A and Set B). The distribution of radii size of 84,961 

parasites is plotted in (a), and the distribution of the 

number of parasites in 1819 images is illustrated in 

(b). The number of images and parasites in each 

patient is illustrated in (c) and (d) respectively. The 

red lines in the four subfigures indicate the average 

parasite radius, the average number of parasites in 

each image, the average number of images for each 

patient, and the average number of parasites for each 

patient, respectively

. 
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D. Preselection Performance  

We evaluate the performance of IGMS as follows: 

We consider a parasite candidate generated by IGMS 

as a truly identified parasite if the overlap between it 

and the corresponding manually annotated parasite is 

larger than 50%. This overlap ratio is chosen 

empirically based on the balance of preselection 

sensitivity and classification accuracy. Then, we 

compute the sensitivity of IGMS as the ratio of the 

number of truly identified parasites to the total 

number of annotated parasites. Fig. 10 presents the 

sensitivity of IGMS on both image level and patient 

level for Set B. For parasite preselection, the 

proposed IGMS method achieves a sensitivity of 

97.04% on patch level, 97.49%±5.40% on image 

level (Fig. 10(a)), and 96.59%±5.52% on patient 

level (Fig. 10(b)), respectively.  

E. Performance of the Customized 

CNN model  

We evaluate the performance of the customized CNN 

model on Set A using five-fold cross evaluation. 

Each fold contains 24 patients. Table II and Fig. 11 

present the classification performance and receiver 

operating characteristic (ROC). According to Fig. 11, 

our customized CNN model achieves an average 

AUC score of 98.39%, and a standard deviation of 

0.18%, showing its robustness and effectiveness. The 

average accuracy, F-score, specificity, sensitivity, 

precision, and negative predictive values for our 

customized CNN model are 93.46%, 93.40%, 

94.33%, 92.59%, 94.25%, and 92.74%, respectively. 
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Fig. 14. Parasite detection on an example image using our proposed method. (a) Parasites annotated in the ground 

truth (yellow circles) and screened parasite 

candidates that overlap more than 50% with the 

parasites in the ground truth (red and green circles). 

Red circles indicate candidates that are finally 

predicted as parasites (true preselected parasites), and 

green circles indicates those that are predicted as 

non-parasites (false preselected parasites). (b) 

Probabilities of parasite candidates that overlap more 

than 50% with parasites in the ground truth. The 

number under each patch denotes the output 

probability of the CNN. Red and green numbers 

indicate probabilities larger than 0.6 and smaller than 

0.6, respectively. 

F. Evaluation on Patch, Image and 

Patient Level  

Set B contains 30 patients, 375 pictures, and 12,777 

parasites; to evaluate our automated parasite 

identification approach, we apply IGMS and CNN 

classifier to this set. Out of the 187,500 patches 

generated by IGMS, 13,066 are deemed positive due 

to their overlap of more than 50% with the ground 

truth annotations. Using a classifier score cutoff of 

0.6, we apply the modified CNN model to the 

187,500 patches and forecast 13,687 patches as 

parasites. After five rounds of cross-validation on Set 

A, this cutoff showed the best accuracy based on the 

ROC curve. Accuracy 97.26%, area under the curve 

97.34%, sensitivity 82.73%, specificity 98.39%, 

precision 79.99%, and F-score 80.81% were the 

performance metrics obtained on the patch level for 

this threshold. Figure 12 and Table III show the 

relevant ROC curve and confusion matrix. Reducing 

the classifier score threshold allows us to get a 

sensitivity of 93% for a specificity of 90%, as seen in 

the ROC curve in Fig. 12.  

We also use linear regression to assess our technique 

on both the image and patient levels, as seen in 

Figure 13. We anticipate an average of 35 parasites 

per picture at the image level, but the ground truth 

images typically include 34 parasites per image. The 

significant connection between the projected number 

of parasites and the ground truth Fig. 13(a) is shown 

by the high correlation coefficient of R=0.98. 

Predicted parasite loads at the patient level are 456 on 

average, compared to 426 in the ground reality. As 

shown in Figure 13(b), we also find a substantial link 

at the patient level, with a correlation value of 

R=0.99.  

Parasite detection, including screening and 

classification, on an RGB picture with dimensions 

4032 × 3024 × 3 pixels, when executed using 

TensorFlow Mobile on a Samsung Galaxy S6 

(powered by an Exynos 7 Octa 7420 Processor and 

running Android version 7.0), takes around 10 

seconds.  
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The suggested strategy is shown in Fig. 14 by a 

realistic example of parasite identification. The 

ground truth parasites are represented by yellow 

circles in Figure 14 (a), whereas the IGMS-screened 

parasite candidates that overlap more than 50% with 

the ground truth parasites are shown by red and green 

circles, respectively. In the modified CNN model, red 

circles represent the screened candidates that are 

ultimately projected as parasites (positives), while 

green circles represent those that are predicted as 

non-parasites (negatives). Figure 14's magnified 

rectangle area shows seven potential parasites (red 

and green circles) and five identified parasites 

(yellow circles). The modified CNN model has 

predicted that five of the parasite candidates are, in 

fact, parasites. The CNN-provided probabilities for 

each candidate are shown in Figure 14(b).  

G. Comparison with pre-trained 

networks  

We perform evaluations on Set B to compare the 

performance between our method and pre-trained 

networks, such as AlexNet, VGG19, and ResNet50. 

First, we extract patch candidates using IGMS, and 

then apply different models to detect the true 

parasites. We compare performances in terms of 

accuracy, sensitivity, specificity, precision, F-score, 

AUC, and sensitivity for a given specificity. As listed 

in Table IV, the accuracy of our customized CNN 

model is about 1% higher than AlexNet, and about 

4% higher than VGG19 and ResNet50. The F-score 

of our customized CNN model is about 5%, 15%, and 

16% higher than the F-score of AlexNet, VGG19, 

and ResNet50, respectively. For a specificity of 

98.39%, the sensitivity of our customized CNN is 

about 5%, 15%, and 23% higher than the sensitivity 

of AlexNet, VGG19, and ResNet50, respectively. 

 

IV. DISCUSSION  

Here, we build a parasite detection app for 

smartphones using deep learning and our IGMS 

approach. As shown in Section III, our program 

attains an area under the curve (AUC) of 97.34% and 

a patch level accuracy of 97.26%, while achieving 

correlation coefficients over 98% on both the picture 

level and the patient level. There are primarily two 

reasons for this: To start, IGMS does a good job of 

selecting candidates for parasites based on the ground 

reality. Secondly, our convolutional neural network 

(CNN) model is able to accurately categorize the pre-

selected candidates thanks to its customizable input 

size and network layers. 

Our CNN model learns to minimize false positives by 

producing fake positive patches (negative patches) 

that closely resemble parasites (positive patches). 

This is achieved by our IGMS approach. Negative 

patches picked at random from the backdrop have 

also been the subject of our research. On the other 

hand, Set B saw an accuracy drop below 75%. This is 

due to the fact that an excessive number of clean 

negative patches are produced by the random picking 

of negative patches. Consequently, a large number of 

false positives are produced when the CNN model is 

trained on such patches.  

Using three distinct input patch sizes—36×36×3, 

44×44×3, and 52×52×3—we have evaluated how 

well our technique performs. We find that a large 

number of false positives are picked up when the 

patch size is 36×36×3. Because there isn't enough 

data to reliably detect parasites with this patch size, 

the procedure fails. The AUC value on the patch 

level is 97.30% when the patch size is raised to 

52×52×3, which is very similar to the findings we 

published for a 44×44×3 patch size. But at the patient 

and picture levels, the correlation values drop to 0.97 

and 0.96, respectively. This is because a larger patch 

results in a greater amount of ambient noise.  

When compared to a conventional support vector 

machine (SVM) classifier trained on HOG features, 

our tailored CNN model achieves 6% better 

accuracy, 8% better sensitivity, 4% better specificity, 

5% better precision, 6% better negative prediction, 

and 6% better F-score. 
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Based on the comparison between our customized 

CNN model and the three pre-trained networks 

Alexnet, VGG19, and ResNet50 (on a CPU), in 

Tables IV and V, we find: 1) our customized CNN 

model is more than ten times faster than VGG19 and 

ResNet50 (see Table V); 2) the accuracy of our 

customized CNN network is significantly better on 

Set A, between one and two percent, than the 

accuracy of a pre-trained VGG19 (p<0.001) and 

AlexNet (p<0.01), with a larger difference on Set B 

(Table IV). ResNet50 achieves an accuracy around 

92.50% on Set A. However, ResNet50 is too big and 

too slow for our smartphone application; 3) according 

to the ROC curve, our customized CNN outperforms 

AlexNet, VGG19, and ResNet50 from 5% to 23% in 

terms of sensitivity for the given specificity. We have 

also applied object detection networks, such as faster-

RCNN [32] and YOLO [33], to detect parasite 

candidates. However, these object detection networks 

do not work well for very small objects like parasites, 

with an average size of 44x44 pixels in an image of 

4032×3024 pixels, resulting in many false negatives. 

V. CONCLUSION  

In this research, we develop a deep learning program 

for mobile devices that can identify malaria parasites 

in thick smear pictures. Two steps make up our 

processing pipeline for automated parasite detection: 

screening for parasites and classifying them. A rapid 

screening of a whole thick smear picture is conducted 

via an intensity-based Iterative Global Minimum 

Screening (IGMS) to identify potential parasites. 

Next, each candidate is categorized as either a 

background or a parasite using a modified CNN 

model. The feasibility of our approach for automated 

identification of malaria parasites is shown by our 

experimental findings. We believe ours is the first 

study to use deep learning methods to identify 

parasites in thick blood smears on smartphones, and 

the second to create a smartphone app for this 

purpose [18]. We also evaluated our app on a patient-

level. To help researchers address the scarcity of 

thick blood smear training data for automated malaria 

detection, we are making accessible our dataset of 

1819 pictures from 150 individuals. Improving the 

performance and runtime of our automated parasite 

identification system on smartphones is our next 

effort. We will be leveraging network ensemble 

methods for this purpose. 
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